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Abstrlct-A mean-field. approximate theory is developed for the determination of the overall
stress-strain relation of a two-phase composite. consisting of randomly oriented elastic. spheroidal
inclusions and a ductile matri.lI. The theory is intended for a low-volume concentration of inclusions.
It is versatile enough to provide results under any prorortionally increasing combint-u stresses.•lOd
yet simple enough to require no iterations. To prescrve the virtue of simplicity. the simrler defor­
mation thellry is used over the incremental one. More so than the elastic behavior. the elastoplastic
response of the cllmposite is found to bc elltremely sensitive to the inclusion shape. with the discs
providing the mllst remMbhle reinforcement. Exrlicit results of the overall secant moduli arc
established for the thrt'C elltreme inclUSIOn shapes of disc. needle (!ihcr) and sphere. An interesting
conseljuence of this 'lIlalysis is that while both the particle and lihcr-reinforced composites !xcome
plastically eompressiole. the disc-rcinli'rced composite as the ductile matrix itsclf··rell1allls plas­
tically incomrressihle. \Vhcn applit'd to a siliellll-carhidt·.'aluminull1 system. the theory indicates
that within the aspect ratio x < 10. the rflliatc and llbl;lte inclusions with inversed aspect ratIOs Ii.e.
x and Il'x) have almost the same e1kct ,In lhe IlllW stress of the composile. but heyomllhis the disc­
orienled inclusions oq:in to show a nlOre supcrior inllucnce. The thcory ;l1so comparcs rcaSlll1aoly
with lhe cxpcrimcntal data whcn thc c;lrhidcs cllisl in thc Ii'rm of randomly oricntcd platelets. with
x"' 1:4.

L INTRODUCTION

This paper is concerned with the determination of the overall stress strain relation of a
two-phasc isotropic compositc, in which clastic, spheroidal inclusions ofa given aspect ratio
are randomly distributed in a ductile matrix. The inclusions and the matrix arc assumed to
be perfectly bonded together. without any void nucleation or growth. Both phases are taken
to be elastically isotropic, and the matrix Illay possess a distinct yield point and nonline~lr

work-hardening characteristics. This class of compositc covers a wide range of inclusions:
they may range from thin discs to oblatc shape, from spheres to prolate or short fibers, and
all the way to needles or continuous fibers. Our objective here is to develop a simple, albeit
approximate, theory which is capable of accounting for the dlcct of inclusion shape on the
overall dastoplastic behavior of the composite at a low concentration of inclusions. Special
attention will be given to the three extreme sh,lpes: disc. fiber and sphere.

The method to be presented is based upon the theoretical framework recently developed
by Tandon and Weng (1988) for particlc-reinforced plasticity. It evolved from the second
writer's study on polycrystal plasticity and composite elasticity (Weng, 1982, 1984), and is
intended for proportionally increasing (not nonradial or cyclic) combined stress. In this
theory the auxiliary interaction problem between a single inclusion and a plastically de­
forming matrix is treated with Hill's (1965) weakening constraint power of the matrix.
whereas the inclusion-inclusion interaction at a finite volume concentration is considered
by Mori and Tanaka's (1973) mean-field approach. The theoretical foundation leading to
such a development was given extensively in that earlier paper where, among others, it has
also been demonstrated that, up to 47% of particle concentration, the theoretical predic­
tion was in reasonable agreement with the experimental data of a silica particle/epoxy matrix
composite.

1537



153:-< Y P QIL and G. 1. WESt;

The elastic counterpart of the present problem has been studied by TandvlO and Weng
(1986). whose formulations will prove to be useful here. Also using Mori-Tanaka's mean­
field theory. they found that. when the aspect ratio of the randomly oriented inclusions
varies from that of a disc to a needle. the calculated bulk and shear moduli of the composite
always lie between the Hashin and Shtrikman (1963) bounds. As also disclosed earlier by
Weng (1984), the results with spherical inclusions coincide with their lower bounds if the
matrix is the softer phase, and conversely they coincide with the upper bounds. Consistent
with Wu's (1966) investigation. the disc type of n:inforcement was found to be superior to
the needle type. The predicted elastic moduli have also been shown to be in good accord
with the test data for some particle-reinforced and void-containing materials (see Weng.
1984).

As in Tandon and Weng (1988). the method to be presented is a mean-field one. While
it is appreciated that. in the estimate of a nonlinear effective property. a local approach
which can account for the point-to-point variation of the stress field is usually more
accurate than the mean-field approach. such an approach normally can only be employed tt)
particle-or unidirectionally-aligned fiber·-composites (see for instance Chu and Hashin,
1971 : Hill. 1964: Accorsi and Nemat-Nasser. 1986: Teply and Dvorak. 1988). Indeed. even
with "uch simple micwgeomctries the number of studies. due to the dilliculty involved in
the material nonlinearity. has been rather limited. For a rand{)mly-oriented compo"ite
under a combined stress. such a local approach docs not seem to be possible at pn:sent.
and the mean-field approach··which has already proven tt) be ahle to capture the essenet:
of a particle-reinforced plasticity--is believed to he a reasonahle approximation. It should
he recognized, however. that since local yidding is not an:ounted for. the yield stress of the
composite predicted by this theory is always higher than that predicted by the I\lcal analy"i".
lniliallocal yielding in retrospect involves only a very small volume fraction of the matrix.
;lI1d therefore its manifestation on thc ovcrall strcss strain curvc of the eomp\lsitc will not
he significant. But the approximation inherellt in thc me;ln-licld approach for a physic;i1ly
nonlincar prohlem will IH:cessitale Ihe applic;llion to hc limited to the low-volume con­
centration range. under which Ihe majority of the deformation lield in the ductile matrix is
more uniform.

2. CONSTITUTIVE H)tJATIONS OJ' TilE C()~STITUENTS

In Ihe two-ph.lse system the randomly oriented spheroid'll inclusions will be referred
to as phase I••tnd the ductile matrix as phase O. The isotropic bulk and shear moduli of
the rth phase will be denoted by "r and II,. respectively, and its volume frw.:tion by Cr'

Since the theory is intended only for monotonic. proportional loading. the deformation
theory -- instead of the incremental theory will be used to describe the l11ultiaxial stress
strain relation of the ductile m.ltrix. Under a uniaxial tcnsion the !low stress-plastic strain
relation of most metals Can usually be represented by the modilied Ludwik e4uation

(J = (J, + II' (/:1')", ( I )

where 11 is the flow stress at the plastic strain ;:". and 11,. It and /I arc the initial yield stress.
strength coellkient. and work-hardening exponent. in turn. These three material constants
can be readily determined from a tensile stress-stmin curve,

The "secunt" Young's modulus of the matrix. defined by the ratio of tensile stress to
the tensile stmin ·-whidl is the sum of the clastic and plastic cnmponents--·is given hy

E''0 = I I:P

1'+ I(P"J~H (1,.+" I: )

(2)

where E" is its ordinary Young's modulus. With rcspect to thc undeformed state, the
"sceant" bulk and shear moduli of the matrix arc taken to satisfy the isotropic relation
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(3)
E~ ,E~)

II:~ = 3( 1-=~2\~f) = 1\:0' /lo = i(T+\'~,) ,

in terms of the "secant" Poisson ratio v~). The assumption of plastic incompressibility­
which also results in II:t = I\:o-further provides

(4)

in terms of Poisson's ratio \'0' The plastic state of the matrix is therefore fully characterized
by any of E~l' Iii) or v~).

Since the ductile matrix is usu~llIy in a triaxial stress state, it is useful to generalize (I)
to

(1* = (1\. + It' (f."o)",

in terms of von Mises' effective stress and strain, defined respectively by

(5)

(6)

where a;, is the deviatoric stress tensor. Then in a triaxial stress state the secant Young's
modulus bt.'Comcs

E:l = '-I:--"~-'~-----'--- - ---­

En + ", +h' (1:"°),,

(7)

3. THE EFFI:cnVE SECANT MODULI OF A RANDOMLY ORIENTED COMPOSITE

i\ detailed derivation which started from Hill's (1%5) indusion-Olatrix interaction
hy way of Ikrveilkr and Zallui's (197lJ) modification under proportional loading to
inl:orporale Mori amI Tanaka's (1973) method, l:~lll be found from Tandon and Weng
(19XX) for partide-reinforced plasticity. We now extend sUl:h a formulation to the condition
where indusions arc randomly oriented in the matrix. Familiar symbolic notation --- where
a second-order tensor is denoted by a bold-faced Greek \ctter and a fourth-order tensor by
an ordinary capitallelter-will for bn:vity be employed in the first half of this section.

The mil.:rogeomctry of a two-phase. isotropic composite with randomly oriented sphe­
roidal indusions is sl.:hematically shown in Fig. I, in which the material axes arc denoted

(tij
Xl

,

Fig. J. The isotropic composite model with randomly oriented clastic. sphcroidal inclusions and
ductile matrix.
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by X,. and the local. oriented axes by x;. with X', aligned along thc symmctric line of the
considered inclusion. Now let the composite be subjected to an external traction given rise
to a uniform stress ii. and denote the (yet unknown) secant moduli tensor of its matrix
phase by L;,. To facilitate the analysis we also introduce at this instant a linearly elastic
comparison material also with a moduli tensor L;,. and subject it to the same boundary
traction. Such use of a linearly elastic comparison material in the prediction of a nonlinear
effective property of the composite has also been suggested recently by Talbot and Willis
(1987). The uniform strain in the comparison material is then gin:n by

(8)

where L;, ' is the inverse of L;,. This choice of comparison material ditTers somewhat from
that suggested by Tandon and Weng (1988). where the nonlinear matrix was chosen for
such a purpose. It is believed that this new choice will represent the current state of the
matrix inside the composite system more accurately. Both choices, however. lead to the
same overall response for the composite in the end.

The average stress and total strain of the matrix in the composite system usually difTer
from those of the comparison material. say by if and i. n:spectivdy. so that the mean strcss
is given by

(9)

Similarly, the mean stress and strain of the inclusions. dependin!! on their orientations.
further diller fro III those of the surrounding matrix hy S\lI11C perturhcd values. say. (J"'(O. 1M
and /:"'(0. 1M. respectively. Thus

(J'll(O,IM = ii+ii+(JI"({J,IM = Ldr."+/:+r.I'I(O.IMl

=1.;,[1:" +i +r.1'I(O, 1M --r.*(O. IMI. ( 10)

where L I is the clastic moduli tensor of the inclusions and, being isotropic. is orientation­
independent. The last equality represents Eshelby's (1\)57) equivaknt-indllsion principle
hy which the equivalent transformation strain 1l*(fJ,IM (or eigenstrain; Mtlra, 19X7) is
introduccd into the regions of the comparison material, whosc corresponding positions in
the composite arc occupied hy the inclusions, to yield the same (J'I'. As pointed out hy
Tandun and Weng (19XX). thc cocllicient in the eqllivaknt equation in this case L;, in
(10) -also represents the constraining power of the matrix; it thus weakens continuously,
as first recognized by Hill ( 1965). The connection between 1:1" (0.4» and ,;*( 0,4» is ealcubted
in the linearly clastic comparison material with L;" and. using Eshelby's ,<,>'-tensOl" but nmv
referred to the local principal axes x;. is given by

(II)

where the transformation tensor S~-correspondingto Lf,-depends on the aspect ratio x
(the ratio of the length to the diameter) of the inclusions and the secant Poisson ratio of
the matrix \';,. Its components for a general spheroid and for the three limiting shapes:
(i) disc, (ii) fiber and (iii) sphere. are given in Appendix A.

The local, oriented strain components 81,,<al arc related to the unoriented ones 8. or vice
versa. through the usual transformation:

(I ~)

where the rotational matrix Q (not a fourth-order tensor) has the components
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(

COS fJ sin fJ cos 4>

Q'I = -sin 0 cos {} cos 4>

o -sin 4>

and the superscript T represents its transpose.
l'ow comparing (9) with (10), we find

sin {} sin 4»
cos {} sin 4> •

cos 4>

( 13)

Furthermore. since a;:: rc,O'ld. one has

which in view of (14). also leads to

( 14)

( 15)

( 16)

where the brackets (') represent the orientational average of the said quantity.
On the other hand. the tot~lI strain of the composite is given by B= Lcrt,r, = co(tn+i) +

c,[to+B+(tl'l(O.4>))],lcading to

( 17)

Thus once (t'(O, 4») is determined in terms of to, which is related to a by (8), the secant
moduli tensor of the compositc L, will follow from

a ;:: L,i.. with L, = (3",.2Jl,), ( 18)

where ", ~ll1d It, arc the ellcctive "secant" bulk and shear moduli of the composite at the
considered ii.

The details for linding the average (c') in terms of r. ll have been given by Tandon and
Weng (19SO) for the elastic case. but the structure remains cxactly identical under the
e1astoplastic deformation. Bricfly. for each oriented inclusion the last equation of (10) is
first transformed to the local axes so that connection (II) can be used. This ~lIlows one to
lind CI~,'." in terms of r.1~""'1 and B'o,a'. which in turn may be transformed back to r.

ll and i of
the material axes. We then carry out the orientational average of (10) and (17). with

I I"f"(e ... ) ;:: 1~- e'" sin 0 dO d(p.
_l! IJ II

This process leads to (sec Tandon and Weng. 1986)

for the hydrostatic and deviatoric components. respectively, where

( 19)

(20)

I
- i5~ [(S~,:!~ -S':mH2a l- a4 +a~a) +2(S~ "' -S'::!l' -1 Hal +a:!)

(S'II:!:! - S'::!:!:! +I )(2a) - {/4 - Gsa)]}.

,A.S 27-1~-E

(21 )
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The constants al.a~..... as. a. are given in Appendix B. In addition. one also has

where

and

1'. = 1'1/1"" q, = q~/q~.

p~ = [al -2(a~ -aJ -a4)]/3a.

2 I I I
q~ = - 52Sb ~ +II~/(ill -11;,) - :3 2S~m +11;1/(,1 I -/1;1)

(22)

(23)

(24)

The secant bulk and shear moduli of the composite then follow from (18). (17) and
(22). as

1\:, II,

1\:0 1+('11',' II;) 1+£"11/,
(25)

This pair of equations enables one to determine the aspect-ratio dependence of the secant
moduli.

For the three particular shapes of inclusions-sphere. disc and fiber- these results
take a simple form:

(i) spheres. ~ = I

, (I\: 1- 1\:0)(31\:0 + 4/1;,)
1" = - ---------

• I\:1l(31\:1 +4/1;,) •

(' I (,1 I -II;) )(91\:0+ 8/1;,)
q'l = I + ---'-"'-~-----------'--,--~-.

6(1\:0 + 2/(0)/11 + (91\:0 + 8/11l)/1 0

, 5(,1 I -/1;,)(31\:0 + 4/1;,)q - _._---_._-----_ ..._._-- ..
! - 6(I\:o+2/1~)/ll +(91\:o+8/1~)/I;)'

(26)

(27)
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(ii) discs.:x - 0

1543

(28)

It, = III +

(iii) flhers.:x .... X;

Co
(29)

I'~ =

, I c l("-'I-"-'0)(l l l+3It ;,)
1'1 = + , .

"-'00"'-1 +111+3110)

("'I -"'-0)0"'-0+111 +311;,)

"'-00"'-1 +111+3It;,)

(30)

"-', = "-'1+
Co

An interesting consequence of these results is that. although both the particle and fiber­
reinforced composites are plastically compressible. a disc-reinforced composite. according
to this model. remains plastically incompressible,

~, TilE STRESS,STRAIN CURVE

Now let the composite be subjected to a monotonically increasing proportional loading

(32)

where the 'XiI are the desired proportional constants. and ii(t) an increasing stress function
(i being a time-like parameter). When a(t) is small. the overall response is elastic. and as
a(i) continues to increase plastic deformation will take place.
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·t I. Elastic ht'hl.ll·;or
In this case the overall bulk and shear moduli

are sufficient to describe its response. The results for this pair of moduli follow from (25),
with the subscript and superscript s deleted in every term to correspond to the elastic state.
For the three specific cases of spheres. discs and needles. the results are explicitly given by
(27), (29) and (3\). in turn. It is easily recognized that the effective moduli for the particle
and disc-reinforced composites coincide with Hashin and Shtrikman's (1963) lower and
upper bounds. respectively, if the inclusions are the stiffer phase. Conversely. the results
are reversed when they are the softer phase. Those of the fiber- (or needle-) reinforced
composite generally lie between the two (this is explicitly visible for the ,,·-term). and. when
JI, = flo. its /\ is seen to coincide with that of the disc-reinforced composite. Indeed. under
this later condition all three of them lead to Hill's (1963) exact solution. The results derived
for the disc case also coincide with Walpole's (1969) self-consistent estimates. and, for the
needle-reinforced composite. the expressions are identical to his equation (60), provided
that the properties of the effective medium -/\ and Jt on his right side-assume the values
of the matrix 1\0 and Jto. respectively.

4.2. EllIstoplllstie hdull'ior
Plastic deformation commences when the yield condition of the matrix is satisfied; this

occurs at IT*IO) = IT ... To examine this onset of yielding (in the average. not the local. sense)
and the subsequent plastic deformation it is noted from (9), (20) and (X) that the ctfective
stress of the matrix in a general e1astoplastic state can be written as

where tf* is the dlCdive stress of the composite. defined as

(35)

Under the combined loading (32) it is convenient to introduce

in parallel [0 (35). Then. tf* == :x*a(t). and the plastic deformation beings at

where 'I I is the value 01''1'1. but evaluated at the elastic state (with all the sub- and superscript
s deleted).

The dfcctive stress of the matrix afterwards must satisfy its constitutive eqn (5). and
this leads to

OX)

Thus under an external tf" the average stress and strain state of the matrix can be
determined iteratively in the following way. One may first assume a value for /;p'. from
which the values of E~, v~ and J.l~ are calculated by (7), (4) and (3). These values enable
one to determine the components of S~. and (/,,{/z •...• a5' II from the Appendix. and then
e/, from (21) for the considered aspect ratio. With this 'Ii. the value of I;P' will follow from
(38) at the considered 11(1). If this £p' is equal, or very close to the originally assumed value.
then the solution is found. Otherwise a new £p' reflecting the newly calculated value should
be assumed to repeat the same process. until the true £p' is found. Once r,P" is known. the
values of 0'1111 and 1:

1111 also follow.
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For the sole purpose of generating the stress-strain curve of the composite from those
of its constituents. however. such an iterative process is not necessary. In this regard one
may first assume a value for eP' to begin with. from which the values of £1. V~. ,u~. s~. a,.
a and q'l follow in the way just described. The stress a(t) then is given by (38). and so are
a,; from (32) for the desired 'XI/" On the other hand. the effective secant moduli (31\,.2,u,)
are given by (25). leading to a i"~ for the composite. If the plastic strains are needed. they
are

.. (I I).,
e~ = ;;;--. -:;- a'l'

-II, -II
(39)

By incre'lsing the value of j;P' and repeating the same process. the entire stress-strain curve
of the composite can be determined at a given aspect ratio and volume concentration of
inclusions.

5. NL'j\(ERICAL RESULTS AND COMPARISON WITH EXPERIMENTS

II is now of interest to examine the properties of a practical system. To this end we
choose the silicon-carbide/6061-aluminum composite for calculations. The clastic and
plastic properties of hoth phases arc (Arsenault. 1984; Nieh and Chellman. 1(84):

silicon-carhideinclusions: E I = 490 GPa. VI =0.17

aluminum matrix: E" = oX.} GPa. \'u == 0.33

(T .. == 250 MPa. II = 17J MPa and fl == 0.455.

Using these values as the properties of the inclusions and matrix. respectively. we first
examine the tensile stress strain curves of the.: composite reinforceu with (i) discs. (ii) fihers
alld (iii) spheres. The results ,It the three volume fractions·· ('I == 5%. 10'% and 20'% arc
depicted in Fig. 2. The shape of the inclusions is seen to have a pronounced cflect on the

______.. __ ._" c_.__
. ,

--_..---
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Fil:!. ~. Tensile slressslrain curves ofsilieon-carbidc/aluminum compositcs. when the carbides exist
in the form of (a) discs. (b) fib\:rs and (c) spheres.
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Fig. 3. Thc aspcd-ratlO depc/ldc/ll;C of thc tcnsile stress strainl:llfvcs of thl: 1:t1ll1posill:s.

overall response. As in the dastic case. thc discs provide thc most dlCctivc rcinfon:elllellt
and the spheres arc thc least t:llCctivc. with the fibers lying bctween the two.

At ('I = 20'1.,. a more complete examination on the aspcct-ratio dependcnee of the
stress-strain curve is shown in Fig. 3 for tivc dilicrent aspcct ratios. The work-hardening
moduli arc seen to improvc more drastically when the aspect ratio decreascs from 0.1 to O.
as compared with the corresponding incre,lse from 10 to U:... Within the range 0.1 < =t < 10.
however. the improvement appears to be about the same when the shapc varies in both
ways. Such a behavior is further illustrated in Fig. 4. whcre the stress-strain curves with
':1. = 4 and 1/4 an: demonstrated side-by-side at three volume concentrations. In examining
these three ligures it also bccomes evident that the overall plastic behavior of the compositc
is more sensitive to thc inclusion shape than the clastic behavior.

The theory is finally compared with the experimental data. which were obtained by
Arsenault (19H4) for the same composite system with randomly oriented platelets. The
aVCf,lge aspcet ratio of the oblate inclusions is about 1/4. and ('I = 0.20. Thc cxperimental
results. with four different prior thickness reductions by warm rolling before the heat
treatment to recover its microstructure. are depicted as discrete symbols in fig. 5. Also
shown here are the stress-strain curves of silicon carbide and 6061 aluminum. The theor­
etical prediction is shown as the solid line murked "Theoretical". The initial clastic response
is seen to be very well predicted and. although in the plastic range the theory underestimates
the flow stress somewhat. it seems to lie within a tolerable range of accuracy.

ft is not clear exactly why the theory underestimates the flow stress of the composite
as compared with these data. One possible reason is that carbide platelets are not exactly
spheroidal and well separated in re,dity. but instead possess corners and may be in contact.
Another possibility is attributable to the additional i/l.l"il/l hardcning in the ductile aluminum
matrix in the presence or the strong silicon carbides. This additional hardening is caused
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Fig. 4. The tensile stress strain relations of the composites reinforced with (:I) prolate il1l:lusions :It
% "" 4. and (h) ohl'lle indusions :It % "" 1/4.

oy the dislocation pile-ups against the oostacles and the long-range obstucle-dislocation
interactions. At room temperature the dynamic or thermal recovery is more dillicult and
the pile-ups cannot climb over the obstacles us easily. Such an additional hurdcning is
obviously not n:prescnted by the original constitutive equations of the pure mutrix. In 41

separate study of dual-phuse plasticity. Weng (1990) has also encountered similur exper­
imental data for a dual-phase steel. where the experimental stress-strain curve even lies

(TIl (Mpa)
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Fig. 5. Comparison between the theoretical prediction and the experimental data of a silicon­
carbide/606\ aluminum composite. with platelet-type reinforcement at (X '" 1(4.
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Fig. 6. E.\lent of deviation from strict proportionality for the average stress of the ductile nwtri\
when the cOlllposih: is umler pure tension.

ahove the upper bOllnd predil:tion ofTaylor\ (19~X) I:()(lstant total strain (without an:ollnt­
ing for the ill silll hardening). The predse amount or sIKh an additional hardening, howevcr,
rcmains an opcn question and the determination or its shape and volul1lc-fraction depen­
dence is dearly heyond the scope of this study.

Finally we must note that, when the compositc is under a proportionally im:reasing
loading, the ductile matrix is not stril:tly under the proportion'll loading as well. The
deviation from a strict proportiomllity, however, generally stays within Budiansky's (1959)
criteriun of physical soundness [which was based on Drucker's (1951) postulates in
incremental plasticity}. To illustrate the aspccHatio dependence of such a deviatiun, we
plot in Fig. 6 the I:orresponding loading path of the ductile matrix in rr'i'i and rr~l~ space
under a monotonically increasing iii I at Cl ::: 20"1.•. The initial linear portions refer to the
clastic state, and the deviation commences at phlstic yielding. For the considaed constitutive
eqn (5), the yield surface possesses no corner and, with the work-h'lrdening exponent
II ::; 0.455 for aluminum, the permissible deviation is 65' in the entire stress space. The
actual devi'ltions in Fig. 6 apparently are less than this value. Such was found to be also
the case for other aspect ratios, and for other types of loading as well.

We have therefore developed a relatively simple multiaxial theory of plasticity which
allows one to estimate the elfcct of inclusion shape on the overall stress-strain relations of
a two-phase, isotropic composite. It should be recognized, however, that a mean-field
approach to a nonlinear system-as mentioned in the Introduction -is usually not as
accurate as a local one, but within the low-concentration range the difference between the
two is not expected to be large. Thus while the mathematical structure of the theory can
account for the high concentration of inclusions, in reality its application should be limited
to the low concentration range.

.·fck"""/,,,It/'·fI/'·/II-This work was supported by the National Science Foundation. Solid and GeoMechanics
Program. under Gr.tnt MSM K6-14151.
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APPENDIX A: ESHELBY'S S-TENSOR IN TERMS OF TIlE SECANT MODULI

For a spheroidal indusion Wilh the symllletrie a~is identified as x ,. the components of [shelhy's tensor S:,AI
arc

\., ~ -_ .. ~ ~'-- {I -'..'+ ~:.~= I-[I -'..'+ 2:~JIJ}
"1111 ~(I-\';.l -0 :l1_1 -II ~1_1' .

____~__._ ~ ..~+ _~ __ {_:%l -(1-2\';,I}".
~(I -I';,) %" - I 4(1 -I';,) %' - I .

S' "~ S' = - --'-~-[1-2I" +-._I_.J+ __I-- [I-~I" +'--.~-J",".. " " ~( I - 1';,1 "%" - 1 2(1 - 1';,1 "~( %. - I) .

(AI)

whcre ..;, is the secant Pllisson's ratio of the matrix (or more precisely the Poisson ralio of the linearly elastic
comparison material). % is the aspect ratio of the inclusion (~ lid). and.q is given by
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q = x__ 'x(x' -I) 1 : -cosh 'x',. prolate shaN'.
(x' -I) " , 1-'-

fA:!)

= --~-- 'cos' X-I(I-I')' 'i.
II-x')" ,

For a sphencal mciusllJn. they simplify to

ulJlate shape, (AJ)

5~'~1 - I
lSI 1-1':,)'

-1.-5v;,
lSI 1-1';,)'

(A~)

F,lr a nccdle or circular cylinder with x - Y.• we have

5'"" = O.

~I';,-I

5:", = 5;'"" = ~(T~,)'

2(1 -- I';,)

S', 1 .. : .\', , " = 0,

1-"01" a thill diSC w,lh x ·.0, Ihc ollly lIollvallishin~,'lllnpollcnis MC

APPENDIX II: ('()\IP()!"ENTS UI-' iI, .... ii" iI

ii, = 6(", -"',,)(j" -jl;,)(S"" +.\'::,,-1) -21"'"jl, -"',I';,)+6",(j" -jl;,).

iI: c; 6(,,', -"',,)(j" -jl;".';·"" +2(""jl, -",jl;,).

(AS)

(AO)

iI. ,; 6(", '''")(l',-I';,)(S~,,,-·I)+2("·"j"·-",I':,)+6jl,(", -"'"J,

ii, -, I IS·" .. -.'i'"" + I -jl,/(I', -j';,II.

iI (,(,,', "")(jl,'j,;,)[2S'""S\",-(S'",, ·1)(.)'\,,,+,';\,,,-I)I+2("·,,j"-",jl;,)[2(S',,,,+S\,,,)+

(S'"" -S'"" --S\",)1-6",(jl,-j';')(.'i~",--I) --6j"('" -"")(S:",+.'):,,,-I)-6",jl,.


