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Abstract—A mean-field, approximate theory is developed for the determination of the overall
stress-strain relation of a two-phase composite, consisting of randomly oriented elastic, spheroidal
inclusions and a ductile matrix. The theory is intended for a low-volume concentration of inclusions.
It is versatile enough to provide results under any proportionally increasing combined stresses. and
yet simple enough to require no iterations, To preserve the virtue of simplicity, the simpler defor-
mation theory is used over the incremental one. More so than the elastic behavior, the clastoplastic
response of the composite is found to be extremely sensitive to the inclusion shape, with the dises
providing the most remarkable reinforcement. Explicit results of the overall secant moduli are
established for the three extreme inclusion shapes of disc, needle (fiber) and sphere. An interesting
consequence of this analysis is that while both the particle and fiber-reinforced composites become
plastically compressible, the disc-reinforeed compaosite - ax the ductile matrix atself —remains plas-
tically incompressible. When applicd to a silicon-carbide/aluminum system, the theory indicates
that within the aspect ratio x < 10, the prolate and oblite inclustons with inversed aspect ratios (e,
2 and /%) have almost the sanie effect on the flow stress of the composite, but beyond this the dise-
oriented inclusions begin to show i more superior influence. The theory ialso compares reasonably
with the experimentad data when the carbides exist in the form of randomly oniented platelets, with
x o= i,

1 INTRODUCTION

This paper is concerned with the determination of the overall stress-strain relation of o
two-phase isotropic composite, in which elastic, spheroidal inclusions of a given aspect ratio
are randomly distributed in a ductile matrix. The inclusions and the matrix are assumed to
be perfectly bonded together, without any void nucleation or growth, Both phases are taken
10 be elasticully isotropic, and the matrix may possess a distinet yield point and nonlinear
work-hardening characteristics. This class of composite covers a wide range of inclusions;
they may range from thin discs to oblate shape, from spheres to prolate or short fibers, and
all the way to needles or continuous fibers, Our objective here is to develop a simple, albeit
approximate, theory which is capable of accounting for the effect of inclusion shape on the
overall elastoplastic behavior of the composite at a low concentration of inclusions. Special
attention will be given to the three extreme shapes: disc, fiber and sphere.

The method to be presented is based upon the theoretical framework recently developed
by Tandon and Weng (1988) for particle-reinforced plasticity. It evolved from the second
writer's study on polycrystal plasticity and composite elasticity (Weng, 1982, 1984), and is
intended for proportionally increasing (not nonradial or cyclic) combined stress. In this
theory the auxiliary interaction problem between a single inclusion and a plastically de-
forming matrix is treated with Hill's (1965) weakening constraint power of the matrix,
whereas the inclusion-inclusion interaction at a finite volume concentration is considered
by Mori and Tanaka’s (1973) mean-field approach. The theoretical foundation leading to
such a development was given extensively in that earlier paper where, among others, it has
also been demonstrated that, up to 47% of particle concentration, the theoretical predic-
tion was in reasonablc agreement with the experimental data of a silica particle/epoxy matrix
composite.
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The elastic counterpart of the present problem has been studied by Tandon and Weng
{1986}, whose formulations will prove to be useful here. Also using Mori-Tanaka’s mean-
field theory, they found that. when the aspect ratio of the randomly oriented inclusions
varies from that of a disc to a needle, the calculated bulk and shear moduli of the composite
always lie between the Huashin and Shtrikman (1963) bounds. As also disclosed earlier by
Weng (1984), the results with spherical inclusions coincide with their lower bounds if the
matrix is the softer phase. and conversely they coincide with the upper bounds. Censistent
with Wu's (1966) investigation, the disc type of reinforcement was found to be superior to
the needle type. The predicted elastic moduli have also been shown to be in good accord
with the test data for some particle-reintforced and void-containing materials (sce Weng,
1984).

Asin Tandon and Weng (1988). the method to be presented is a mean-field one. While
it is appreciated that, in the estimate of a nonlineuar effective property. a local approach
which can account for the point-to-point variation of the stress field is usually more
accurate than the mean-field approach. such an approach normally can only be employed to
particle—or unidirectionally-aligned tiber-—composites (see for instance Chu and Hashin,
1971 ; Hill, 1964 Accorsi and Nemat-Nasser, 1986 ; Teply and Dvorak. [988). Indeed. even
with such simple microgeometries the number of studics, due to the difficulty involved in
the material nonlincarity, has been rather limited. For a randomly-oriented composite
under a combined stress, such a local approach does not scem to be possible at present,
and the mean-ficld approach -~which has already proven to be able to capture the essence
of a particle-reinforced plasticity —is believed to be a reasonable approximation. [t should
be recognized, however, that since tocal vielding ts not accounted for, the yield stress of the
composite predicted by this theory is abways higher than that predicted by the local analysis.,
Initiad ocal viclding in retrospect involves only a very simall volume fraction of the matnix,
and therefore its manifestation on the overall stress strain curve of the composite will not
be significant, But the approximation inherent in the mean-fickd approach for a physically
nondincar problem will necessitate the application to be limited to the low-volume con-
centration runge, under which the majority of the deformation fickd in the ductile matrix s
more untform,

2. CONSTITUTIVE EQUATIONS OF THE CONSTITUENTS

In the two-phase system the randomly oriented spherotdal inclusions will be referred
to as phase 1, and the ductile matrix as phase 0. The isotropic bulk and shear moduli of
the rth phase will be denoted by &, and g, respectively, and its volume fraction by ¢,.

Since the theory is intended only for monotonic, proportional loading, the deformation
theory — instead of the incremental theory - will be used to deseribe the multiaxial stress
strain relation of the ductile matrix. Under a uniaxial tension the flow stress-plastic strain
relation of most metals ean usually be represented by the modified Ludwik equation

o =qa +h (), (h

where a is the flow stress at the plastic strain ¢, and o, A and » are the initial yield stress,
strength coellicient, and work-hardening exponent, in turn. These three materiad constants
can be readily determined from a tensile stress-strain curve,

The “sccant”™ Young's modulus of the matrix, defined by the ratio of tensile stress to
the tensile strain -—which is the sum of the elastic and plastic components —is given by

5 e
i i

Ey * o’bx. +he ey

oS

where £, is its ordinary Young's modulus. With respect to the undeformed state, the
“secant” bulk and shear moduli of the matrix are taken to satisty the isotropic relation
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in terms of the “secant”™ Poisson ratio vy. The assumption of plastic incompressibility —
which also results in k) = k,—further provides

s _ | { 9 :
Vo = 3= {3~vy) . 4
"E,
in terms of Poisson’s ratio v,. The plastic state of the matrix is therefore fully characterized
by any of E%. u} or vy
Since the ductile matrix is usually in a triaxial stress state, it is useful to generalize (1)
to

o* =0, +h (). {3
in terms of von Mises’ effective stress and strain, defined respectively by
o* = (lo,0,)' . & = (Gt (6

where g, is the deviatoric stress tensor. Then in a triaxial stress state the secant Young's
modulus becomes
1
M T et Tt i A e e ey e
<) = l ‘:pt . (7)
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30 THE BFPECTIVE SECANT MODULI OF A RANDOMLY ORIENTED COMPOSITE

A detailed derivation which started from Hill's (1965) inclusion-matrix interaction -~
by way of Berveiller and Zaou's (1979) modification under proportional loading  to
incorporate Mori and Tanaka’s (1973) method, can be found from Tandon and Weng
{1988) for particle-reinforeed plasticity. We now extend such a formulation to the condition
where inclusions are randomly oriented in the matrix. Familiar symbolic notation —where
a second-order tensor is denoted by a bold-fuced Greek letter and a fourth-order tensor by
an ordinary capital letter—will for brevity be employed in the first half of this scction.

The microgeometry of a two-phase, isotropic composite with randomly oriented sphe-
roidal inclusions is schematically shown in Fig. 1, in which the material axes are denoted

N4

/
y \
z3
H 5’ij

Fig. 1. The isotropic composite model with randomly oricnted elastic, spheroidal inclusions und
ductile matrix.
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by x,. and the local. oriented axes by x|, with x) aligned along the symmetric line of the
considered inclusion. Now let the composite be subjected to an external traction given rise
to a uniform stress 4. and denote the (yet unknown) secant moduli tensor of its matrix
phase by Lj. To facilitate the analysis we also introduce at this instant a linearly elastic
comparison material also with a moduli tensor L3. and subject it to the same boundary
tractton. Such use of a lincarly elastic comparison material in the prediction of 4 nonlinear
effective property of the composite hus also been suggested recently by Talbot and Willis
(1987). The uniform strain in the comparison material is then given by

e’ =1L 'd. (8)

where L, ' is the inverse of L}. This choice of comparison material differs somewhat from
that suggested by Tandon and Weng (1988). where the nonlinear matrix was chosen for
such a purpose. It is believed that this new choice will represent the current state of the
matrix inside the composite system more accurately. Both choices, however, lead to the
same overall response for the composite in the end.

The average stress and total strain of the matrix in the composite system usually differ
from those of the compurison material, say by ¢ and £, respectively, so that the mean stress
is given by

o' =d+d = Ly"+0. 9)
Similarly, the mean stress and strain of the inclusions, depending on their orientations,
further differ from those of the surrounding matrix by some perturbed values, say, a™ (0, )

and &0, p), respectively. Thus

0" 1)(”1 (f’)

it

a+d+o" (0, ) = L,Je"+E+(0, ]
Lye"+E+M0, ) ~e*(0. P (1

i

where L is the elastic moduli tensor of the inclusions and, being isotropic, is orientation-
independent. The last equality represents Eshelby’s (1957) equivalent-inclusion principle
by which the equivalent transformation strain e*(f, ¢) (or cigenstrain:; Mura, 1987) s
introduced into the regions of the comparison material, whose corresponding positions in
the composite are occupied by the inclusions, to yield the same o', As pointed out by
Tandon and Weng (1988). the coetlicient in the equivalent equation  in this case L) in
(10) —also represents the constraining power of the matrix ; it thus weukens continuously,
as first recognized by Hill (19635). The connection between e™ (4, ) and £*(0. ) is calculated
in the lincarly clastic comparison material with L, and. using Eshelby’s S-tensor but now
referred to the local principal axes x/, is given by

ehoa (0, @) = Shelt u(0. 9), ()

where the transformation tensor Sy —corresponding to L}, —depends on the aspect ratio «
(the ratio of the length to the diameter) of the inclusions and the secant Poisson ratio of
the matrix v,. [ts components for a general spheroid and for the three limiting shapes:
(1) disc, (ii) fiber and (iii) sphere, are given in Appendix A.

The local, oriented strain components g, arc related to the unoricnted ones &, or vice
versa. through the usual transformation:

Eioc.ﬂ = QI:QY‘ ’dﬂd &= er’:lumIQ- “2)

where the rotational matrix Q {not a fourth-order tensor) has the components
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cosf sinfcos¢d sinfsing
Q,=|—sin® cosfcos¢ cosfsing]|. (13)
0 ~Sin ¢ cos ¢

and the superscript T represents its transpose.
Now comparing (9) with (10). we find

o™ (0.¢) = Ly[e"' (0. ) —e*(0. $)]. (t4)
Furthermore, since d = Z¢,6'". one has
¢ = —c, (6™ (6.¢)). (15
which in view of (14}, also leads to
E= —¢ (" (B.P)—e*(0,P)). (16)

where the brackets {*> represent the orientational average of the said quantity.
On the other hand. the total strain of the composite is given by § = Zc,e"! = ¢o(e"+8) +
c[e" + &+ {e™(0. ¢))]. leading to

E=2¢"+c,(e*(0.9)). )

Thus once {&'(f. ¢)) is determined in terms of ¢, which is related to ¢ by (8). the secant
moduli tensor of the composite L, will follow from

= L& with L, = (3r.2u). (18)

Qs

where k, and g are the effective “secant™ bulk and shear moduli of the composite at the
considered 4.

The details for finding the average {e') in terms of £” have been given by Tandon and
Weng (1986) for the clastic case, but the structure remains exactly identical under the
clastoplastic deformation. Bricfly, for cach oriented inclusion the last equation of (10) is
first transformed to the local axes so that connection (11) can be used. This allows one to
find g, in terms of g), and &, which in turn may be trunsformed back to £" and £ of
the material axes. We then carry out the orientational average of (16) and (17), with

l n 2 .
(e*> = 7[ f £* sin ¢ do) ddo. (19)
=T Ju Jo
This process leads to (see Tandon and Weng, 1986)
Gu = (lf,[’\l - l)*iz’k‘ 5:, = (!;‘,tf‘l - 1)531 (20}

for the hydrostatic and deviatoric components, respectively, where

]

c
po=4 3; 2051+ 85+ Shu = Day+a) + (8100 #2850 — Dlay = 2a2)]
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The constants a), a,..... as. a, are given in Appendix B. In addition, one also has
Cele) = Pt <81 = 4ty (22
where
Py =pip. 4= Qg (23)
and
ps=la,—2a,—a,—a,)]/3a,

2 | i |
TS 2SN ab /(i — ) 328N (i — i)

=
[Ehd

|
+ 15 e +ay—ay) +as+asal (24)

The secant bulk and shear moduli of the composite then follow from (18), (17) and
22). as

ke l+cipo wy 1+,
This pair of equations enables one to determine the aspect-ratio dependence of the secant
moduli.

For the three particular shapes of inclusions —sphere, disc and fiber — these results
take a simple form:

(1) spheres, 2 = |

degpiy(n, —Ky)

P Ko(3K, +4;1’I,T !
Py = — (ki —Ko) 3y +41y)
) Ko(3w | +4u)
g = ('1_(_[l| — 1) (9% + %/‘:)) B
' 6(Ko+ 2h ), + Ono + 8y’
= — SO — o) Gro+4y) (26)
: 6(Ko+2u0)p, + (Ing + 8y
$ L“
K, = '\'()+ l .;(_
ICq
Kl "’Ko + 3’\:0 +4ll;)
¢y
= u . 27
M= Hot Ty 6 colo+21}) N

+ s
Hio—phy S uy(3rg+4uy)
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{11) discs, 2 -0
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An interesting consequence of these results is that, although both the particle and fiber-

reinforeed composites are plastically compressible, a disc-reinforced composite, according
to this model, remains plastically incompressible.

4. THE STRESS-STRAIN CURVE
Now let the composite be subjected to a monotonically increasing proportional loading
6:;’(:) = 1116(’)- (32)

where the %, are the desired proportional constants, and 6{f) an increasing stress function
(¢ being a time-like parameter). When &(r) is small, the overall response is elastic, and as
d(t) continues to increase plastic deformation will take place.
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4.1, Elustic beharior
In this case the overall bulk and shear moduli

L = (3k.2u) (33

are sufficient to describe its response. The results for this pair of moduli follow from (23).
with the subscript and superscript s deleted in every term to correspond to the elastic state.
For the three specific cases of spheres. discs and needles, the results are explicitly given by
(27). (29) and (31). in turn. It is easily recognized that the effective moduli for the particle
and disc-reinforced composites coincide with Hashin and Shtrikman’s (1963) lower and
upper bounds. respectively, if the inclusions are the stiffer phase. Conversely. the results
are reversed when they are the softer phase. Those of the fiber- (or needle-) reinforced
composite generally lie between the two (this is explicitly visible for the x-term), and. when
I, = fy. its x is seen to coincide with that of the disc-reinforced composite. Indeed. under
this later condition all three of them lead to Hill's (1963) exact solution. The results derived
for the disc case also coincide with Walpole's (1969) self-consistent estimates. and. for the
needle-reinforced composite, the expressions are identical to his equation (60). provided
that the propertics of the effective medium—« and g on his right side—assume the values
of the matnix ny, and g, respectively.

4.2, Elustopluastic behavior

Plastic deformation commences when the yield condition of the matrix is satisfied ; this
occurs at ¢*'" = ¢,. To examine this onsct of yiclding (in the average. not the local, sensc)
and the subsequent plastic deformation it is noted from (9). (20) and (8) that the effective
stress of the matrix in a general clastoplastic state can be written as

o* = a*/q. 34
where a* is the effective stress of the composite, defined as
@t = (id,6,)' °. (35)

Under the combined loading (32) it is convenient to introduce

x* = (3x,2,)" 7 (36)

in parallel to (35). Then, 6* = x*4(1), and the plastic deformation beings at
é(t) = (¢q,/2%)s,. (37)

where ¢ is the value of ¢, but evaluated at the elastic state (with all the sub- and superscript
s deleted).

The effective stress of the matrix afterwards must satisfy its constitutive egn (5), and
this leads to

a(1) = (¢\/a*)o, +h- (")) (38)

Thus under an external &, the average stress and strain state of the matrix cun be
determined iteratively in the following way. One may first assume a value for £, from
which the values of E}, vy and uj, are calculated by (7), (4) and (3). These values enable
one to determine the components of S}, and a,.a......aq, a from the Appendix. and then
¢\ from (21) for the considered aspect ratio. With this ¢\, the value of ¢ will follow from
(38) at the considered G(¢). If this € is equal, or very close to the originally assumed value.
then the solution is found. Otherwise a new ¢°" reflecting the newly calculated value should
be assumed to repeat the same process, until the true ¢ is found. Once & is known. the

values of ¢! and &' also follow.



Elastoplastic behavior of two-phase isotropic composite 1545

For the sole purpose of generating the stress-strain curve of the composite from those
of its constituents, however, such an iterative process is not necessary. In this regard one
may first assume a value for ¢°° to begin with, from which the values of E}. vi. u). S}, a..
a and ¢4 follow in the way just described. The stress 6(r) then is given by (38). and so are
G, from (32) for the desired x,. On the other hand. the effective secant moduli (3x.,2p,)
are given by (25). leading to a &, for the composite. If the plastic strains are needed, they

are
A T A VR S A
GEI\' - 3’\.5 - 3K Gpkn 81/ - i/.;: - 2“ 6:/~

By increasing the value of ¢*” and repeating the same process, the entire stress—strain curve
of the composite can be determined at a given aspect ratio and volume concentration of
inclusions,

39

5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS

It is now of interest to examine the properties of a practical system. To this end we
choose the silicon-carbide/6061-aluminum composite for calculations. The elastic and
plastic propertics of both phases are (Arsenault, 1984 Nieh and Cheliman, 1984):

E,=490GPa, v, =0.17
vy = 0.33

b= 173 MPa and n = (0.455.

silicon-carbide inclusions :
aluminum matrix: £, = 68.3 GPa,

o, = 250 MPua,

v

Ustng these values as the properties of the inclusions and matrix, respectively, we first
exanune the tensile stress stran curves of the composite reinforeed with (i) discs, (i) fibers
and (i) spheres. The results at the three volume fractions ¢, = 5%, 10% und 20%  are
depicted i Fig. 20 The shape of the inclusions is seen to have a pronounced effect on the
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€
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in the form of (a) discs. (b) fibers and () spheres.

(e)

Fig. 2. Tensile stress strain curves of silicon-carbide/aluminum composites, when the carbides exist

€11{%)
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Fig. 3. The aspect-ratio dependence of the tensile stress striin curves of the compuosites.

overall response. As in the clastic case, the dises provide the most effective reinforcement
and the spheres are the least effective, with the fibers lying between the two,

At ¢, = 20%, a more complete examination on the aspect-ratio dependence of the
stress-strain curve is shown in Fig. 3 for five different aspect ratios. The work-hardening
moduli are scen to improve more drasticaily when the aspect ratio decreases from 0.1 to 0,
as compared with the corresponding increase from 10 to oo, Within the range 0.1 < x < 10,
however, the improvement appears to be about the same when the shape varies in both
ways. Such a behavior is further illustrated in Fig. 4, where the stress -strain curves with
a2 = 4 and 1/4 are demonstrated side-by-side at three volume concentrations. in examining
these three figures it also becomes evident that the overall plastic behavior of the composite
is more sensitive to the inclusion shape than the clastic behavior,

The theory is finally compared with the experimental data, which were obtained by
Arsenault (1984) for the sume composite system with randomly oriented platelets. The
average aspect ratio of the oblate inclusions is about 1/4, and ¢, = 0.20. The experimental
results, with four different prior thickness reductions by warm rolling before the heat
treatment to recover its microstructure, are depicted as discrete symbols in Fig. 5. Also
shown here are the stress-strain curves of silicon carbide and 6061 aluminum. The theor-
etical prediction is shown as the solid line marked “Theoreticul”. The initial clastic response
is seen to be very well predicted and, although in the plastic range the theory underestimates
the flow stress somewhat, it seems to lic within a tolerable range of accuracy.

It is not clear exactly why the theory underestimates the flow stress of the composite
as compared with these data, One possible reason is that carbide platelets are not exactly
spheroidal and well separated in reality, but instead possess corners and may be in contact.
Another possibility is attributable to the additional in situ hardening in the ductile aluminum
matrix in the presence of the strong silicon carbides. This additional hardening is caused
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Fig. 4. The tensile stress strain relations of the composites reinforeed with (a) prolate inclusions at
1 =4, and {b) oblat¢ inclusions at 2 = /4,

by the distocation pile-ups against the obstacles und the long-range obstacle -dislocation
interactions. At room temperature the dynamic or thermal recovery is more difticult and
the pile-ups cannot climb over the obstacles as easily. Such an additional hardening is
obviously not represented by the original constitutive equations of the pure matrix. In a
separate study of dual-phase plasticity, Weng (1990) has also encountered similar exper-
imental data for a dual-phase steel, where the experimental stress-strain curve even lies

11 (Mpa)
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<
e
S ] o
-

<
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: } Ezxperimental

$

Composite with ¢, =02, a=1/4

I TheoreﬁmlT
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O 0% reduction, then T6 heating
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\l Y T T

0.0 0.5 19 1.5 2.0 23 3.0
€11 (%)

Fig. 5. Comparison between the theorctical prediction and the experimental data of a silicon-
carbide/6061 aluminum composite, with platelet-type reinforcement at x = /4.
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Fig. 6. Extent of deviation from strict proportionality for the average stress of the ductile matrix
when the composite is under pure tension.

above the upper bound prediction of Taylor's (1938) constant total strain {without account-
ing for the in sitechardening). The precise amount of such an additional hardening, however,
remains an open question and the determination of its shape and volume-fraction depen-
dencee s clearly beyond the scope of this study.

Finully we must note that, when the composite s under a proportionally increasing
loading, the ductile matrix is not strictly under the proportional loading as well, The
deviation from a strict proportionality, however, generally stays within Budiansky's (1959)
criterion of physical soundness [which was based on Drucker’s (1951) postulates in
incremental plasticity]. To illustrate the aspect-ratio dependence of such a deviation, we
plot in Fig. 6 the corresponding loading path of the ductile matrix in ¢y and 64} space
under & monotonically increasing &, at ¢ = 20%. The inttial lincar portions refer to the
clastic state, and the deviation commences at plastic yielding. For the considered constitutive
eqn (5), the yield surface possesses no corner and, with the work-hardening exponent
n = 0.455 for aluminum, the permissible deviation is 65 in the entire stress space. The
actual deviations in Fig. 6 apparently are less than this value. Such was found to be also
the case for other aspect ratios, and for other types of loading as well.

We have therefore developed a relatively simple multiaxial theory of plasticity which
allows onc to estimate the effect of inclusion shape on the overall stress—strain relations of
a two-phase, isotropic composite. It should be recognized, however, that a mean-ficld
approuach to a nonlinear system—as mentioned in the Introduction —is usually not as
accurate as a local one, but within the low-concentrution range the difference between the
two s not expected to be large. Thus while the mathematical structure of the theory can
account for the high concentration of inclusions, in reality its application should be limited
to the low concentration range.
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APPENDIX A: ESHELBY'S S-TENSOR IN TERMS OF TIHE SECANT MODULI

For a spheroidal inclusion with the symmetric axis identified as x,. the components of Eshelby’s tensor 87,
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where v, is the secant Poisson’s ratio of the matrix (or more precisely the Poisson ratio of the linearly clastic
comparison material), z is the aspect ratio of the inclusion (= //d), and g is given by
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For a spherical inclusion, they simplity to
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For a needle or circular evlinder with x — =, we have
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APPENDIX B: COMPONENTS OF u, ... .u. u
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